
30

Chapter 3

Building more interesting

pictures

3.1 Other kinds of arguments

3.1.1 Strings as arguments

You may have noticed that if you put two images of different height beside one another,
or two images of different width above one another, their centers are usually lined up:

> (beside)

Now let’s try something slightly different. Type each of the following three expressions
and observe the results:

(beside/align "top")

31

32 CHAPTER 3. BUILDING MORE INTERESTING PICTURES

(beside/align "bottom")

(beside/align "middle")

Try using above with two or more pictures of different widths; then try each of the
following three expressions.

(above/align "right")

(above/align "left")

(above/align "middle")

You’ve just seen two new functions, beside/align and above/align, each of which
expects an extra argument to indicate how you want things lined up. This extra argument
isn’t an image, it’s a different kind of information called a string — a sequence of letters
enclosed in double-quote marks. (We’ll go into more detail on this in Section 3.4.) If you
leave out the quotation marks, e.g.

(above/align right)

then DrRacket will think right is an undefined variable, and will give you an error
message.

3.1. OTHER KINDS OF ARGUMENTS 33

There’s also an overlay/align function with two string arguments: it expects the
first argument to be either "left", "right", or "middle", and the second to be either
"top", "bottom", or "middle". The third, fourth, etc. arguments should be images. Play

with these functions.

3.1.2 Numbers as arguments

Next, try

(rotate 15)

which rotates the image by 15 degrees instead of 90. Play with this.

Now, try

(scale 2)

(scale 2/3)

(scale 1.41)

which makes an image larger or smaller. Play with this.

Note that the rotate and scale functions expect an extra argument that is neither
an image nor a string — it’s a number. Numbers can be written in several ways, as you
saw above, but they cannot contain spaces (so, for example,

(scale 2 / 3)

wouldn’t work). We’ll learn more about numbers in Racket in Chapter 7.

(There’s also a scale/xy function that allows you to stretch or squash a picture by
one factor vertically and a different factor horizontally. Look it up in the Help Desk.)

34 CHAPTER 3. BUILDING MORE INTERESTING PICTURES

3.2 More mistakes

Now that we’ve seen functions that expect different types of arguments, there’s a whole
new world of things that can go wrong, with a whole new set of error messages to tell
you about them. As before, let’s make some of these mistakes on purpose so that when
we make them by accident later, we’ll recognize what’s going on.

Try typing

(beside/align "top")

You would get the error message

beside/align: expected <y-place> as first argument, given: . . .

because beside/align expects its first argument to be the string (specifically, a “y-place”,
i.e. one of the strings "top", "middle", or "bottom").

Likewise,

(overlay/align "top" "right")

produces an error message because it expects an x-place (i.e. either "left", "right", or
"middle") as its first argument, and "top" is none of those.

3.3 Creating simple shapes

So far, all your pictures have either been copied-and-pasted from other programs, or con-
structed from copied-and-pasted pictures using beside, rotate-cw, etc. In this section
we’ll learn to build simple geometric shapes from scratch. (As in the rest of the book,
we’ve put the pictures in black and white to save on printing. If some of them don’t make
sense, try looking at the textbook Web site, where a lot of this stuff appears in color.)

One of the simplest geometric shapes is a rectangle. But there are lots of different
possible rectangles, of different sizes, shapes, and colors. In addition, DrRacket allows

you to draw both solid rectangles and outline rectangles . When we
create a rectangle, we need to make all these decisions and tell DrRacket exactly what
kind of rectangle we want.

DrRacket has a built-in function named rectangle that creates such pictures. It
needs to be told the width and height of the rectangle (in pixels on the screen), whether
it’s solid or outline, and what color it should be, in that order:

3.3. CREATING SIMPLE SHAPES 35

> (rectangle 34 21 "solid" "green")

> (rectangle 15 36 "outline" "purple")

Practice Exercise 3.3.1 Make up several examples of rectangles by plugging in different
values for width, height, solid vs. outline, and color.

If you try a color DrRacket doesn’t recognize, you’ll get an error message, but it won’t
hurt anything. Likewise, if you put anything other than "solid" or "outline" in the
third argument position, you’ll get an error message, but it won’t hurt anything.

SIDEBAR:

The complete list of known color names is in the Help Desk; look up
color-database<%>.

Practice Exercise 3.3.2 What do you think would happen if you left out the color, e.g.
(rectangle 34 21 "solid")? Type it in and find out whether you were right.

What happens if you put the color first, e.g. (rectangle "green" 34 21 "solid")?
Try various other mistakes, read the error messages, and make sure you understand them.

Practice Exercise 3.3.3 Define a variable named solid-green-box whose value is a
solid green rectangle, and another named outline-blue-box which is what it sounds like.
Combine these in various ways using above, beside, overlay, etc.

Another built-in function, circle, does exactly what you expect: it creates circles.
Circles, like rectangles, can be either solid or outline, and of various colors, but rather
than having a separate width and height, they have only a radius: for example, (circle
10 "solid" "orange") produces a solid orange circle of radius 10.

Practice Exercise 3.3.4 Make up several examples of circles. Use above, beside, and
overlay to compare a circle of radius 10 with a square whose width and height are both
10. How would you build a picture of a solid orange circle just fitting inside a solid blue

square, ?

Yet another built-in function, ellipse, has arguments similar to those of rectangle:
width, height, solid or outline, and color. Try it.

Practice Exercise 3.3.5 Make up several examples of ellipses. Show another way to

construct a picture like .

The triangle built-in function has arguments similar to those of circle: a number
representing the length of each edge of the triangle, the word "outline" or "solid", and
a color name. It builds an equilateral triangle pointing up.

There are lots of other built-in functions like these. Look up the following in the Help
Desk:

36 CHAPTER 3. BUILDING MORE INTERESTING PICTURES

• right-triangle

• isosceles-triangle

• rhombus

• regular-polygon

• star

• star-polygon

• line

• add-line

Practice Exercise 3.3.6 Make up several examples using these functions.

Of course, nobody actually memorizes all these functions — I certainly haven’t! You
should know that these functions exist, and how to look them up when you need them.

Exercise 3.3.7 How would you construct a picture like ? (Note that the top
edge of the triangle matches exactly the top edge of the square, and the bottom point of
the triangle is exactly in the middle of the bottom edge of the square.)

Hint: It is possible to do this, using what you’ve seen so far, with no math beyond
elementary school.

3.4 Data types and contracts

In the previous chapter, you asked Racket to operate on images and produce images. In
this chapter we’ve seen two additional kinds of information, or data types : numbers and
strings.

You already have a pretty good idea of what numbers are, but strings may be new to
you. In Racket (and C, and C++, and Java, and most other programming languages), a
string is a sequence of letters, numbers, punctuation marks, spaces, etc. surrounded by
double quote marks. The rules for what makes a string are similar to, but not quite the
same as, those for what makes an identifier: an identifier can’t contain spaces, or certain
punctuation marks, while almost any key you can type on the keyboard can go inside a
string. (The main exception is the double-quote mark itself, as this indicates the end of
the string. If you really want to put a double-quote mark inside a string, there is a way
to do it, but we won’t go into that here.)

3.4.1 String literals and identifiers

When you type a string, enclosed in quotation marks, it’s a literal — that is, its value
is just itself. By contrast, when you type a word that isn’t enclosed in quotation marks,
DrRacket thinks of it as an identifier : if there’s a function or a variable by that name,
that’s what it “stands for”, and if there isn’t, it doesn’t “stand for” anything.

A variable in Racket may “stand for” any type of information — a picture, a number,
a string, or other types we’ll learn about later.

3.4. DATA TYPES AND CONTRACTS 37

Practice Exercise 3.4.1 Type each of the following expressions into a newly-opened
interactions pane, one by one. For each one, predict what you think it will do, then hit
ENTER and see whether you were right. Explain the results. If you get an error message
(as you should for some of them), read and understand the error message.

• "hello"

• hello

• (define "author" "Bloch")

• (define author Bloch)

• (define author "Bloch")

• "author"

• author

• (define author "Bloch")

• (define calendar)

• (define age 19)

• "calendar"

• calendar

• "age"

• age

• "Bloch"

• Bloch

• (beside calendar calendar)

• (beside "calendar" "calendar")

• (define age 20)

• (define 20 age)

38 CHAPTER 3. BUILDING MORE INTERESTING PICTURES

3.4.2 Function contracts

As you’ve already seen if you tried exercise 3.3.2, each built-in function “knows” how many
pieces of information, of what kinds, in what order, it should be given, and will reject
other kinds of information. For example, flip-vertical, rotate-cw, etc. all expect to
be given a single image, and will produce an error message if you give them no image,
or more than one image, or a non-image such as a number or a string. (Try each of
these mistakes and see what message you get.) This kind of pickiness may sometimes
feel as though it’s intended to annoy you, but really, what would it mean to “rotate” two
pictures, or a number? The designers of DrRacket didn’t see any obvious answer to these
questions, so they simply made it illegal to do those things.

Similarly, beside, above, and overlay each expect to be given two or more images;
they produce an error message if you give them too few images, or anything other than
an image. The beside/align and above/align functions each expect a string and two
or more images, while overlay/align expects two strings and two or more images.

Practice Exercise 3.4.2 See what happens if you break these rules.

The rectangle and ellipse functions expect to be given two numbers and two
strings, in that order; furthermore, the first string must be either "solid" or "outline",
and the second must be a color name. If you give either of these functions the wrong
number of things, or the wrong types of things, or the right types in the wrong order, it’ll
produce an error message.

Practice Exercise 3.4.3 Try these various mistakes and see what different messages
you can get.

Obviously, you can’t properly use any function unless you know how many arguments,
of what types, in what order, it expects to be given. You also need to know what type of
result it produces (so far, all our functions produce images, but that will change soon!).
All of this information together is called a function contract : think of it as the function
making a “promise” that “if you give me two numbers and two strings, in that order,
I’ll give you back an image.” A function contract can be described in words, as in the
previous three paragraphs, but we’ll have a lot of functions to deal with in this course,
and that gets tiresome. Instead, we’ll adopt a shorter convention for writing function
contracts:
flip-vertical : image -> image

beside : image image ... -> image

above/align : string image image ... -> image

rotate : number image -> image

In this convention, we write the name of the function, then a colon (:), then the type(s)
of the arguments, then an arrow (I usually use a minus sign and a greater-than sign,
which together look sorta like an arrow), then the type of the result. We use ellipses (. . .)
to indicate that there may be an indefinite number of additional arguments.

When a function takes several arguments of the same type, it often helps to say
something about what each one means, so you remember to use them in the right order.
I do this with parentheses:

rectangle: number(width) number(height)

string("outline" or "solid") string(color) -> image

By reading this one contract, you can immediately tell that to create, say, an outlined blue
rectangle 30 wide by 17 high, you should type (rectangle 30 17 "outline" "blue")

3.4. DATA TYPES AND CONTRACTS 39

Practice Exercise 3.4.4 Write the function contracts for ellipse, circle, triangle,
and star-polygon, using the standard convention.

There’s nothing magical about this convention for writing function contracts, but fol-
lowing a common convention makes it easier for programmers to understand one another.

3.4.3 Comments

If you try to type function contracts into the DrRacket window, you’ll get an error message
because they’re not legal expressions (according to rules 1-4). However, people frequently
want to include function contracts in a Racket program, so they use comments to indicate
something intended for the human reader, not for Racket.

Different programming languages specify comments in different ways, but every pro-
gramming language I know of has some way to write comments. Here are three common
ways it’s done in Racket:

End-of-line comments

The most common way of making something a comment in Racket is to put a semicolon
at the beginning of the line; everything else on that line will be ignored completely. You
can write anything in a comment, including a letter to your grandmother:

(define calendar)

; Dear Grandma,

; I am learning to program, using the Racket language. So far

; I’ve learned to rotate and scale pictures, put pictures

; together in various ways, and make rectangles, circles,

; ellipses, triangles, and stars, and I can keep these pictures

; in variables to use later. However, this letter is in

; English, not in Racket, so I’ve "commented it out" to keep

; DrRacket from complaining about it. That’s all for now!

; Love,

; Joe Student

(beside calendar calendar)

Of course, that’s not a realistic use of DrRacket: there are much better programs
around for writing letters to your grandmother! More likely, if you were using several
built-in functions, you would write down their contracts in comments for easy reference:
; beside : image image ...-> image

; rectangle : number (width) number (height)

; string ("outline" or "solid") string (color) -> image

; rotate-cw : image -> image

Multi-line comments

If you want to write several lines of comments in a row, it may be more convenient to use
another kind of comment: type #| (the number sign and the vertical bar), and everything
after that (even onto later lines) will be ignored, until you type |#.

40 CHAPTER 3. BUILDING MORE INTERESTING PICTURES

(define calendar)

#|

Here are several lines of commented-out contracts.

beside : image image ...-> image

rectangle : number (width) number (height)

string ("outline" or "solid") string (color) -> image

rotate-cw : image -> image

|#

(beside calendar calendar)

Practice Exercise 3.4.5 Write six different expressions on separate lines of the Defi-
nitions pane. “Comment out” the second one with a semicolon, and the fourth and fifth
with #|...|#. Hit “Check Syntax”, and the commented parts should turn brown. Hit
“Run”, and you should see the results of the first, third, and sixth expressions.

Expression comments

Yet a third kind of comment allows you to “comment out” exactly one expression, re-
gardless of whether it’s a single line, part of a line, or multiple lines.

Practice Exercise 3.4.6 Type the following lines into the Definitions pane (assuming
you’ve already got definitions of the variables calendar, hacker, and solid-green-box):

#; calendar hacker

#; (beside calendar hacker)

#; (beside

hacker

calendar

) solid-green-box

(beside calendar #; hacker solid-green-box)

On the first line, calendar is ignored, but hacker isn’t, so you get a picture of a hacker.
The entire next line is ignored. Of the next four lines, (beside hacker calendar) is
ignored, but the solid-green-box is not. And on the last line, the hacker is ignored and
you get a picture of a calendar next to a solid green box.

Regardless of which kind of comment you use, DrRacket will automatically color it
brown to show what parts it is ignoring.

3.4.4 Comments in Practice

There are two especially common reasons that we’ll use comments: to write down function
contracts, and to temporarily “hide” part of a program while working on another part.
For example,

3.5. MORE FUNCTIONS ON PICTURES 41

; beside : image image ... -> image

; flip-vertical : image -> image

; image-width : image -> number

; rotate-180 : image -> image

(define calendar)

; (define two-cals (beside calendar calendar))

; (above two-cals (rotate-180 two-cals))

(above calendar (flip-vertical (scale/xy 1 1/2 calendar)))

The first four lines specify the contracts of functions we may be using. The next defines
a variable. The next two are “commented out”: presumably either they already work,
and we don’t want to be bothered with them while working on something else, or they
don’t work as desired yet, and we’ll come back to them later.

SIDEBAR:

If you have a large section of program that you want to comment out temporarily,
select all the relevant lines and use the “Comment Out with Semicolons” command
on the Racket menu, and it’ll put a semicolon in front of each line. Likewise, the
“Uncomment” menu command allows you to remove the semicolons from a whole
bunch of lines at once.

3.5 More functions on pictures

3.5.1 Cutting up pictures

So you know how to get a picture of a circle:

(circle 30 "solid" "green")

How would you get a picture of the upper half of this circle? The
picturing-programs library includes a function named crop-bottom which helps with
this kind of problem. Its contract is

crop-bottom : image number -> image

It cuts off (or “crops”) the specified number of pixels from the bottom of a picture.

Worked Exercise 3.5.1 Write an expression which produces the upper half of a solid
green circle of radius 30.

Solution: We already know that (circle 30 "solid" "green") produces the whole
circle. How many pixels do we want to cut off the bottom? Well, the radius of a circle is
the distance from the center to any edge of the circle, in particular the bottom edge. So
if the radius is 30, then we want to cut off 30 pixels:

(crop-bottom (circle 30 "solid" "green") 30)

42 CHAPTER 3. BUILDING MORE INTERESTING PICTURES

Exercise 3.5.2 Here’s a picture of me.
Write an expression that chops the bottom 25 pixels off this picture.

The picturing-programs library also contains functions named crop-top, crop-left,
and crop-right, which behave the same way but crop the top, left, or right edges re-
spectively. There’s also a crop function which allows you to pick any rectangular region
from a picture. As usual, in exchange for more power, it’s a bit harder to use. Look it up
in the Help Desk.

Practice Exercise 3.5.3 Play with these.

SIDEBAR:

Actually, you don’t need all four of these: any one would be enough, combined with
things you already know. Try writing an expression that chops the leftmost 25 pixels
off the picture of me, using crop-bottom but none of the other cropping functions.

The technique you probably used to do this is something mathematicians call
conjugation. It’s not difficult, and it’s worth knowing for future purposes, but for
the sake of convenience, we’ve given you all four cropping functions.

Exercise 3.5.4 Write an expression which produces the bottom 45 pixels of an out-

lined circle of radius 30.

Exercise 3.5.5 Write an expression which produces the top-right quarter of a solid

ellipse 50 wide by 30 high.

Exercise 3.5.6 Invent some other interesting pictures, using cropping together with the
other functions you’ve already seen. Go wild.

3.5.2 Measuring pictures

In order to know how many pixels to crop, it might be helpful to know how many pixels
there are. The library provides two functions to help with this:

; image-width : image -> number

; image-height : image -> number

Notice that these are the first functions we’ve seen yet that return a number as their
result, rather than an image. This will become more useful once we study arithmetic in
Chapter 7.

3.5. MORE FUNCTIONS ON PICTURES 43

Practice Exercise 3.5.7 Find the widths and heights of some of your favorite pic-
tures. Then write an expression to cut off the left one-third of a particular picture.

Note that numeric results appear in the Interactions window just as image results have
been appearing.

3.5.3 Placing images precisely

Here’s a picture of me.
Suppose you wanted to take revenge on me for writing this book by blotting out my eyes:

How would you do this? Obviously, you need a black rectangle, and after some trial and
error you might conclude that (rectangle 45 15 "solid" "black") is the right size
and shape.

But when you try to overlay it on the picture, you get this picture
instead: the blot is exactly centered in the picture, and my eyes aren’t. You could make
the blot bigger, but then it would blot out more of my nose and eyebrows. You could
move the blot all the way to the top, or the bottom, or the left, or the right, using
overlay/align, but none of those puts it exactly where you want it. To deal with this
sort of situation, DrRacket provides a function named place-image that superimposes
one picture at a specified location on another. Its contract is

44 CHAPTER 3. BUILDING MORE INTERESTING PICTURES

place-image : image (foreground)

number (horizontal offset) number (vertical offset)

image (background) -> image

As with overlay, the second image is the “background”, and the first is superimposed
“on top” of it. Unlike overlay, it only accepts exactly two images. It places the center
of the foreground image horizontal-offset pixels from the left, and vertical-offset pixels
down from the top, of the background image.

Experiment by plugging in various horizontal and vertical offsets, both positive and
negative, to see what happens. What horizontal and vertical offsets do you need in order
to blot out my eyes as in the picture above?

Exercise 3.5.8 Write a Racket expression, using place-image, to produce a solid blue
rectangle 80x50 with a solid orange rectangle 30x20 whose bottom-left corner is at the

center of the blue box:

Recall that the place-image function places the center of the foreground image.
Sometimes it’s more natural to place the top-left corner, or the bottom-right corner, etc.
Look up the place-image/align function in the Help Desk.

In experimenting with place-image, you may have noticed that the result is always
the same size and shape as the background image. Even if the foreground image laps over
the edges of the background, the excess is cut off. This is often what you want, but not
always. Look up the overlay/xy function in the Help Desk, and play with it.

3.5.4 Text

Suppose you wanted to draw a picture with words in it. In theory, you could build
letters from tiny rectangles, circles, ellipses, lines, etc. and place them where you wanted
them with place-image, but that would be a Royal Pain. Instead, DrRacket provides a
function named text to do exactly this job. Its contract is

text : string (text to draw) number (font size)

string (color) -> image

For example, try (text "hello there" 12 "forest green") . Experiment with
different font sizes and colors.

Exercise 3.5.9 Write a Racket expression that produces my picture with the caption
“Wanted!” in red near the bottom:

3.5. MORE FUNCTIONS ON PICTURES 45

Exercise 3.5.10 Write a Racket expression placing a word (in blue) on a yellow back-

ground inside a purple border:

Exercise 3.5.11 Write a Racket expression for an interesting picture involving text, po-
sitioning, geometric shapes, rotation, scaling, etc. Go wild.

3.5.5 For further reading...

If you want to learn about other ways to manipulate pictures, go to the “Help” menu in
DrRacket, select “Help Desk”, search for “2htdp/image”, and read the documentation.
It’ll tell you about a number of other functions:

• square

• add-curve

• text/font

• underlay

• underlay/align

• underlay/xy

• empty-scene

• scene+line

• scene+curve

• scale/xy

• crop

• frame

Some of these may involve concepts — define-struct, Booleans, posns, and lists — that
you haven’t seen yet, so don’t worry about them. As for the rest, play with them and
have fun. Don’t worry about memorizing them all; just get a general idea of what’s there,
so you can look it up when you need it.

3.5.6 Playing with colors

We’ve built a lot of images using color names like "purple", "yellow", etc.. This is
great as long as the color you want happens to be one of the ones whose name DrRacket
recognizes. But what if you want just a little bit more blue in your purple, or a slightly
darker turquoise than "turquoise"?

The picturing-programs library, like most computer graphics systems, represents
colors as combinations of red, green, and blue, each of which (for historical reasons) can
be any whole number from 0 to 255. For example, black is made from 0 red, 0 green,
and 0 blue; white is 255 red, 255 green and 255 blue; pure blue is 0 red, 0 green, and 255
blue; yellow is 255 red, 255 green, and 0 blue; and so on. You can mix your own colors
by using the make-color function, and passing the result into a function like rectangle,

46 CHAPTER 3. BUILDING MORE INTERESTING PICTURES

triangle, etc.in place of the color name:

This means the contracts for those functions are actually something like
; circle : number string("solid" or "outline") string-or-color -> image

Practice Exercise 3.5.12 Play with this. Make up a bunch of shapes in various colors
that you’ve mixed yourself, and compare them with shapes in predefined colors.

If you want to see the numeric value of one of the standard named colors, use

; name->color : string -> color or false

; returns false if color name isn’t recognized

For example,

> (name->color "white")

(make-color 255 255 255 255)

> (name->color "forest green")

(make-color 34 139 34 255)

Note that this returns a color with four parts, not three. The fourth is called “alpha”,
and it controls transparency: a color with an alpha of 255 is completely opaque, covering
whatever was behind it, while a color with an alpha of 0 is completely transparent. If you
call make-color with three arguments, it assumes you want the color to be opaque, so it
fills in 255 for the fourth argument automatically, but if you wish you can make shapes
that are “semi-transparent”.

Practice Exercise 3.5.13 Play with this. Make a shape whose color has an alpha com-
ponent of 120, and see what happens when you overlay or underlay it on another shape.

We’ll learn more about the “color” data type in Chapter 20.

3.6 Specifying results and checking your work

When you try to do one of these exercises, the odds are that your first attempt won’t
exactly work. How do you know? Well, you type the expression into the Interactions
pane, hit RETURN/ENTER, and you get either an error message or a picture that isn’t
what you were trying for. It may be interesting, it may be pretty, and often that’s how
creative work starts — as an unsuccessful attempt to do something else — but it doesn’t
fulfill the assignment. So you figure out what you did wrong, come up with something
that addresses the problem, and try that to see if it actually works.

What about the “near misses”, in which the picture is almost what you wanted? In
these cases, your mind may play tricks on you and pretend that what you got really is

3.7. READING AND WRITING IMAGES 47

what you wanted all along. (The first attempt at blotting out my eyes, in section 4.4,
almost does the job, and you could convince yourself that it was OK, but in your heart you
would know it wasn’t quite right.) To prevent these mind tricks and make sure you come
up with an expression that produces what you really wanted, I recommend describing

precisely, in writing what the result should look like, before you try anything to get
that result. This way if the result isn’t correct, it’s harder for your mind to fool itself into
accepting it as correct.

For example, consider exercise 3.5.9 above. It’s a reasonably precise description of
what the result should be, but it still has some ambiguity. I didn’t say specifically that
the word “Wanted!” had to be superimposed on the picture; it could have been below
the bottom of the picture. And I didn’t say exactly what font size the word should be.
To make this more precise, one might have written:

The word “Wanted!”, in black, should be superimposed on the picture so there
is little or no space between the bottoms of the letters and the bottom of the
picture. The word should not lap outside either side of the picture, nor cover
any part of Dr. Bloch’s mouth (not to mention nose, eyes, etc.); however, it
should be large enough to read easily.

Or one could go even farther and specify the font size of the word, the exact number of
pixels between it and the bottom of the picture, etc. This sort of precise description of
desired outcomes is easier when the result is a number, a string, or some other type that
we’ll see later in the course, but you can start developing the habit now.

3.7 Reading and writing images

If you’ve built a really cool picture, you may want to save it so you can use it outside
DrRacket (e.g. on a Web page, or in a slide presentation or word-processing document).
This is easy, using the save-image function, which takes in an image and a string, and
stores the image in the file with that name. It uses the PNG image format, so it’s a really
good idea to choose a filename that ends in “.png”. For example,

(save-image (triangle 40 "solid" "purple") "purple-triangle.png")

If you already have an image file, you can get it into DrRacket in any of several ways:

• As you already know, you can open it in a Web browser or other program, copy it,
and paste into DrRacket.

• As you may also already know, you can use the “Insert Image” command (on the
“Insert” menu of DrRacket).

• You can use the bitmap function, which takes in a string filename and returns the
image. If the file doesn’t exist, it’ll return an image of 0 width and 0 height. For
example,

(rotate-cw (bitmap "purple-triangle.png"))

By the way, although save-image always saves things in PNG format, bitmap can
read things in a variety of formats, including PNG, GIF, JPG, etc.

48 CHAPTER 3. BUILDING MORE INTERESTING PICTURES

3.8 Expanding the syntax rules

Based on the syntax rules you’ve seen in Section 2.4, most of the examples in this chapter
aren’t legal Racket expressions, because Syntax Rule 1 allows pictures, but not strings or
numbers. A more accurate and inclusive version would say

Syntax Rule 1 Any picture, number, or string literal is a legal expression; its value is
itself.

Worked Exercise 3.8.1 Draw a box diagram to prove that

(circle 10 "solid" "green")

is a legal expression.

Solution: With the new and improved Rule 1, we can recognize 10, "solid", and
"green" each as legal expressions:

(circle
1
10

1
"solid"

1
"green")

The whole thing then follows by Rule 2:
2

(circle
1
10

1
"solid"

1
"green")

Exercise 3.8.2 Draw a box diagram to prove that

(define tri (triangle 15 "solid" "orange"))

is a legal expression (assuming tri isn’t already defined).

Exercise 3.8.3 Draw box diagrams to prove that
(rectangle 40 26 "solid" "dark blue")

and
(rotate-180 (scale 2 (rectangle 20 13 "solid" "dark blue")))

are both legal expressions.
Are they the same expression? Type each of them into the Definitions pane and click

“Run”. Now click “Step” instead. What does “the same expression” mean?

3.9 Review of important words and concepts

In this chapter, we’ve seen how to use additional built-in functions to create pictures “from
scratch”, rather than copying and pasting them from the Web or other files. To tell these
functions what we want them to do, we need to provide different kinds of information,
e.g. numbers and strings. The categories “number”, “string”, “image”, and many others
that we’ll see in later chapters are all called data types.

Each function “knows” how many arguments, of what types, in what order, it should
be given, and what type of information it will produce. We typically write down this
information, the function contract, in a standard format: the function name, a colon, the
types of its arguments, an arrow, and the type of its result. Where there are multiple
arguments of the same type, we may provide additional information about them in paren-
theses to keep track of which does what. However, this format is not Racket; it’s only
a convention among human programmers, so if you want to put function contracts into

3.10. REFERENCE 49

a DrRacket window, you need to “comment them out” with one of the several kinds of
Racket comments.

Since many of the functions in this chapter take in numbers or strings, we need to
modify our syntax rules so that literal numbers and strings, as well as literal pictures, are
treated as legal expressions, from which more complex expressions can be built. Hence-
forth we’ll use the expanded version of Syntax Rule 1, allowing not only images but
numbers and strings.

3.10 Reference: Built-in functions for images

In this chapter, we discussed the following functions:

• above/align

• beside/align

• overlay/align

• rotate

• scale

• rectangle

• circle

• ellipse

• triangle

• star

• crop-bottom

• crop-top

• crop-left

• crop-right

• place-image

• text

• image-width

• image-height

• make-color

• name->color

• save-image

• bitmap

and mentioned the following, which you are invited to look up in the built-in DrRacket
Help Desk:

50 CHAPTER 3. BUILDING MORE INTERESTING PICTURES

• place-image/align

• overlay/xy

• right-triangle

• isosceles-triangle

• square

• rhombus

• regular-polygon

• star-polygon

• radial-star

• line

• add-line

• add-curve

• text/font

• underlay

• underlay/align

• underlay/xy

• empty-scene

• scene+line

• scene+curve

• scale/xy

• crop

• frame

